Thus far, we have explained that for experimental research we need:

- a hypothesis for a causal relationship;
- a control group and a treatment group;
- to eliminate confounding variables that might mess up the experiment and prevent displaying the causal relationship; and
- to have larger groups with a carefully sorted constituency; preferably randomized, in order to keep accidental differences from fouling things up.

But what if we don't have all of those? Do we still have an experiment? Not a true experiment in the strictest scientific sense of the term, but we can have a quasi-experiment, an attempt to uncover a causal relationship, even though the researcher cannot control all the factors that might affect the outcome.

A quasi-experimenter treats a given situation as an experiment even though it is not wholly by design. The independent variable may not be manipulated by the researcher, treatment and control groups may not be randomized or matched, or there may be no control group. The researcher is limited in what he or she can say conclusively.

The significant element of both experiments and quasi-experiments is the measure of the dependent variable, which it allows for comparison. Some data is quite straightforward, but other measures, such as level of self-confidence in writing ability, increase in creativity or in reading comprehension are inescapably subjective. In such cases, quasi-experimentation often involves a number of strategies to compare subjectivity, such as rating data, testing, surveying, and content analysis.

Rating essentially is developing a rating scale to evaluate data. In testing, experimenters and quasi-experimenters use ANOVA (Analysis of Variance) and ANCOVA (Analysis of Co-Variance) tests to measure differences between control and experimental groups, as well as different correlations between groups. For details about these two common types of tests, refer to the Statistics unit. Survey and content analysis are also detailed elsewhere in this Website.

Since we're mentioning the subject of statistics, note that experimental or quasi-experimental research cannot state beyond a shadow of a doubt that a single cause will always produce any one effect. They can do no more than show a probability that one thing causes another. The probability that a result is the due to random chance is an important measure of statistical analysis and in experimental research.

In the Methods section, we provide more details and a step-by-step scenario, as well as add steps to those so far described.